"1. На луче с началом в точке А отмечены точки В и С. Известно, что AC = 7, 8см, ВС = 2,5 см. Какую длину может иметь отрезок АВ?
2. Луч BP проходит между сторонами угла ABC. Найдите угол РВС, Если угол ABC равен 83 , угол АВР равна 48
3. Один из двух углов, образованных при пересечении двух прямых, на 22 меньше второго. Найдите все образовавшиеся углы.
4. Один из смежных углов в 4 раза меньше второго. "
1) АВ=АС-ВС.
АВ=7,8-2,5=5,3 см.
2) ∠РВС=∠АВС-∠АВР=83*-48*=35*.
3) Меньший угол обозначим через х. Тогда больший будет х+22*
Эти углы смежные и их сумма равна 180*.
х+х+22*=180*.
2х=158*.
х=79*. - меньший угол.
79*+22*=101* - больший угол.
ответ: При пересечении двух прямых образовалось четыре угла: два смежных 79* и 100* и два накрест лежащих: 79*=79* и 101*=101*.
4) меньший угол обозначим через х. Тогда больший будет 4х. Сумма смежных углов равна 180*.
х+4х=180*.
5х=180*.
х=36* - меньший угол.
Больший угол равен 36*4=144*
ответ: 36* и 144*( 36*+144*=180*)
1)Углы 1 и 2 внутренние односторонние, следовательно их сумма равна 180 градусов, поэтому угол 2 равен 180-65 = 115 градусов
2) Углы 2 и 3 смежные их сумма равна 180 градусам, следовательно угол 3 равен 180-115 = 65 градусов
3) углы 2 и 4 и углы 3 и 5 вертикальные между собой,следовательно угол 2=углу 4 = 115 градусов и угол 3 равен углу 5 = 65 градусов
4)С углами 6,7 и 8 все также: 1 и7 вертикальные, следовательно угол 1 = углу 7 = 65 градусам.
5) Углы 7 и 8 - смежные, следовательно угол 8 = 115 градусов
5) Углы 7 и 8 вертикальные, следовательно угол 6 = углу 8 = 65 градусов.
Рисуно к данной задаче во вложенном файле!
AB=5
AD=12
AA1=13
Пусть A - начало координат
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости наименьшей грани ABC
z=0
Диагональ - Вектор AC1(5;12;13)
Синус угла между AC1 и ABC равен
13 / √(5^2+12^2+13^2) = 13 / √338 = √2/2
Угол 45 градусов