(x-2)² +(y+2)²=52
x-2=0
Объяснение:
a) Общая формула окружности
(x-a)² + (y-b)² =R² (1), где a и b соответственно абсцисса и ордината центра окружности, а R - радиус окружности.
Очевидно, что центр окружности О находится точно в середине отрезка MN. Найдем координаты О.
=((Хm+Xn)/2 ; (Ym+Yn)/2) = ( (-4+8)/2; (2+(-6))/2)= (2;-2)
Очевидно , что радиус окружности равен половине длины отрезка MN, так как MN в данном случае является диаметром окружности.
Найдем MN = sqrt ( (Xn-Xm)² + (Yn-Ym)²) = sqrt ((8-(-4))²+ (-6-2)²)=
sqrt(144+64)=sqrt(208)= 2*sqrt(52)
R= MN/2= sqrt(52)
Подставляем найденные координаты точки О и значение радиуса R=sqrt(52) в уравнение (1) . Получим:
(x-2)²+(y+2)²=52
Общее уравнение прямой Ax+By+C=0
Так как искомая прямая параллельна оси ординат, то В=0
Тогда можем записать, что х= -С/A
Нам известно, что прямая проходит через О (2;-2), т.е.
x=-C/А=2
Окончательное уравнение прямой
х=2 , либо х-2=0
ответ:периметр равен 28
Объяснение:
Смотри, АД=6см,т.к.АЕ=ЕД. Значит,АД=ВС=6см(по свойству параллелограмма)
Теперь проведём через точку О прямую НZ,параллельную АД.
У тебя получится параллелограмм АНЕО,где ЕО=АН=4см(опять же свойство параллелограмма)
Теперь посмотри на отрезок ЕО и продли его до ВС. Ты нарисовал/а среднюю линию параллелограмма. Из этого следует,что вся линия будет равна 8 см. Запомни,что в точке пересечения диагоналей параллелограмма его средние линии делятся пополам(нам учительница по геоме рассказывала). Из этого выходит,что АН=НВ=4, а вся сторона параллелограмма будет равна 8.
Найдём периметр параллелограмма:
6см+6см+8см+8см=28см.
аx+ by +cz= 0
Подставляем координаты ненулевых точек.
с=0
a+2b+3c=0
Пусть а= -2 тогда b=1
Уравнение плоскости
-2x +y=0
Нормализованное уравнение плоскости - понадобится для нахождения расстояния от точки до прямой )
k=√(1^2+2^2)= √5
-2√5x/5 + √5у/5 =0