Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Площадь трапеции равна:
S=(a+b)*h/2 - где а и b - основания трапеции; h- высота
Зная верхний угол В найдём углы при основании трапеции:
360 - 2*150=60 (град) - сумма двух углов при основании
Каждый угол при основании, так как трапеция равнобедренная, равен:
60 : 2=30 (град) - углы A и D по 30град.
Найдём h из sinD=sin30 sin30=1/2
sinD=sinA=h/CD=h/AB
1/2=h/6
h=1/2*6=3 (см)
Найдём нижнее основание:
если мы опустим высоты из углов B и С , то получим два прямоугольных треугольника, из которых мы найдём нижний катет, который является частью нижнего основания. Их здесь два.
По теореме Пифагора найдём нижний катет:
6²-3²=36-9=27 √27=√(9*3)=3√3
Нижнее основание равно:
4+2*3√3=4+6√3(см)
Отсюда:
S=(4+4+6√3)*3/2=(8+6√3)*3/2=2(4+3√3)*3/2=12+9√3(см²)
ответ: S=(12+9√3)см²