5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
Находим длину высоты из прямого угла:
ВН = √(12,6*22,4) = √ 282,24 = 16,8 см.
Находим стороны треугольника по Пифагору:
АВ = √(12,6² + 16,8²) = √( 158,76 + 282,24) = √441 = 21 см.
ВС = √(16,8² + 22,4 ²) = √(282,24 + 501,760 = √ 784 = 28 см.
Отрезки АД и ДС, на которые делит гипотенузу биссектриса прямого угла, найдём по свойству биссектрисы:
АД/АВ = ДС/ВС.
Пусть АД = х, а ДС = 35 - х (35 - это длина гипотенузы по заданию).
х/21 = (35 - х)/ 28,
28х = 21*35 - 21х,
49х = 735,
х = 735/49 = 15 см - это АД.
ДС = 35 - 15 = 20 см.