ответ:S=16π
Объяснение:в основании образуется треугольник, состоящий из двух радиусов, к-ые относятся к дуге с 60°, и сторонной, полученной сечением квадрата. Сторону квадрата находим по Пифагору: √(a²+a²) = 4√2, a = 4. Основание треугольника так же равно 4. Этот треугольник, в первую очередь, является равнобедренным, так как имеет две равных сторон (радиусов окружности), но по той причине, что вершина равна 60, это правильный треугольник. Следовательно, все его стороны равны, что указывает, что радиусы равны 4. Зная радиус, мы можем найти длину окружности: 2πr=4π. Высотой цилиндра является сторона квадрата, т.к. второй пересекает его параллельно оси. Отсюда S=4π*4=16π
Дано :
ABCD - параллелограмм
Пусть ∠A =∠C _острые углы ;
AB =BD = 8 ;
AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) .
* * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона:
S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр .
* * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7.
S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ;
2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 .
S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD .
h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
S(ABCD) =AD*h =4√2*2√2 *√7=16√7 кв.ед.
ответ : 16√7 кв.ед.