Впрямоугольном треугольнике abc ( угол c = 90° ) проведена высота сн = h. в треугольники abc, ach, bch вписаны окружности радиусов r, r1, r2. верно ли, что r+r1+r2=h?
1) теорема о свойствах равнобедренного треугольника. в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, . доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника. как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с. следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника
1. средние линии треугольника находятся втом же отношении, что и стороны треугольника. обозначим стороны треугольника буквами а, в и с. тогда а: в: с=2: 3: 4, т.е. а=2х, в=3х, с=4х по условию, периметр р=45см, т.е. а+в+с=45 2х+3х+4х=45 9х=45 х=45: 9 х=5(см) а=2х=2*5=10(см) в=3х=3*5=15(см) с=4х=4*5=20(см) ответ: 10 см, 15 см, 20 см.
BC=a; AC=b; AH=c1; BH=c2
r= (a +b -c1 -c2)/2
r1= (h +c1 -b)/2
r2= (c2 +h -a)/2
r +r1 +r2 =(a +b -c1 -c2 +h +c1 -b +c2 +h -a)/2 =2h/2 =h