а) пусть х=длина диагонали, тогда х-4=длина одной стороны и х-8=длина другой стороны.
так как диагональ прямоугольника разбивает его на два равных прямоугольных треугольника, то получаем что диагональ прямоугольника-это гипотенуза прямоугольного треугольника, а две стороны прямоугольника-это катеты прямоугольного треугольника.
по теореме пифагора получаем
(x-8)^2+(x-4)^2=x^2
x^2-24x+80=0
(x-20)(x-4)=0
откуда x=20 и x=4. x=4 не подходит так как тогда длина одной стороны равна 0, а другой отрицательна. значит длина диагонали равна 20 а стороны 16 и 12 соответственною
значит площадь равна 16см*12см=192см^2
б)пусть длина стороны квадрата=х тогда 4х=192
значит длина стороны квадрата равна 48см
и тогда площадь квадрата равна (48см)^2=2304см^2
Найдите сумму координат вершины С параллелограмма ABCD, если известно, что А(-5; 2; 8), AB(-3; 4; 1) и BD(-2; 4; 1).
Объяснение:
Из условия А(-5; 2; 8), AB(-3; 4; 1) найдем координаты точки В:
х(АВ)= х(В)-х(А) у(АВ)= у(В)-у(А) z(АВ)= z(В)-z(А)
х(В)= х(АВ)+х(А) у(В)= у(АВ)+у(А) z(В)= у(АВ)+у(А)
х(В)= -3+(-5)=-8 у(В)= 4+2=6 z(В)= 1+8=9 .
В(-8; 6; 9).
Из условия В(-8; 6; 9) , BD(-2; 4; 1). найдем координаты точки D:
вычисления аналогичные :
х(D)= -2+(-8)=-10 у(D)= 4+6=10 z(D)= 1+9=10 .
D(-10; 10; 10).
Пусть координаты точки С(х;у;z), тогда координаты DC( х+10;у-10;z-10).
АВСD-параллелограмма, значит вектора равны АВ=DC⇒ координаты равны :х+10=-3 , у-10=4 , z-10=1
х= -13 , у=14, z=11 . Сумма этих чисел :-13+14+11 =12.