№1:
. №2: 
.
№1.
Пусть
, тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна
.
, по условию.
и
- односторонние углы 
№2.
Обозначим данные прямые буквами 
Пусть
- секущая прямых
и 
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.

и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна
".
Рассмотрим углы, образовавшиеся при пересечении прямых
и 
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых
и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.

Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение: