32 см².
Объяснение:
Площадь треугольника можно найти как полупроизведение двух сторон треугольника на синус угла между ними, т.е. по формуле:
,
Найдем синус угла , используя основное тригонометрическое тождество
Тогда площадь треугольника
см².
Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²
32 см²
Объяснение:
Найдем площадь треугольника через синус угла.
Сделаем необходимое преобразование:
sinα=√(1-cos²α)=√(1-225/289)=√(64/289)=8/17
Найдем площадь треугольника по формуле
S=1/2 * a * b * sina = 1/2 * 17 * 8 * 8/17 = 32 см²