Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
Прямая b содержит основание АС треугольника АВС, прямая а пересекает боковые стороны ∆ АВС.
Дано:∠1=∠2 , ∠3 на 30° больше ∠4. Найти: ∠3, ∠4.
----------
Равные ∠1 и ∠2 - соответственные при пересечении прямых а и b секущей ВА. Если соответственные углы равны, то прямые параллельны (признак параллельности прямых)
∠3 и∠4 - внутренние односторонние при пересечении параллельных прямых секущей. ⇒∠3+∠4=180°.
По условию ∠3=∠4+30°, поэтому ∠4+30°+∠4=180°; 2∠4=150° ⇒
∠4=75°
∠3=75°+30°=105°