Зточки до прямої проведено дві похилі, проекції яких на пряму дорівнюють 9 см і 16 см.знайдіть відстань від точки до прямої, якщо одна з похилих на 5 см більша за другу. бажано з поясненням.
Определяем параметры треугольника АВС, как части трапеции. Сумма квадратов сторон ВС и АС равна 400+225 = 625. Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым. Угол АСД равен углу ВАС. Синус этого же угла равен sinACD = √(1-0,6²) = 0,8. Находим стороны: СД = 15*0,6 = 9 см, АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД. S = ((25+9)/2)*12 = 17*12 = 204 см².
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Сумма квадратов сторон ВС и АС равна 400+225 = 625.
Квадрат стороны АВ равен 25² = 625. Значит, треугольник АВС прямоугольный с катетами ВС и АС и гипотенузой АВ и прямым углом ВСА.
Чтобы треугольник второй части трапеции был подобен первому, значит, в нём угол Д должен быть прямым.
Угол АСД равен углу ВАС.
Синус этого же угла равен sinACD = √(1-0,6²) = 0,8.
Находим стороны:
СД = 15*0,6 = 9 см,
АД = 15*0,8 = 12 см.
Сторона АД является и высотой трапеции АВСД.
S = ((25+9)/2)*12 = 17*12 = 204 см².