М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НастяПи
НастяПи
09.10.2020 10:27 •  Геометрия

Сторона основания правильной треугольной пирамиды равна 10 м,боковое ребро 13м.найти площадь боковой поверхности пирамиды

👇
Ответ:
машина34
машина34
09.10.2020
Решение дано на фото.
Сторона основания правильной треугольной пирамиды равна 10 м,боковое ребро 13м.найти площадь боковой
4,5(53 оценок)
Открыть все ответы
Ответ:
ksusha6060606
ksusha6060606
09.10.2020

найдем ДС по теореме пифагора, так как ДА перпендикулярна плоскости основания, значит она и перпендикулярно любой линии лежащей в данной плоскости. ДС = sqrt (20*20+21*21) = 29. Чтобы найти площадь боковой поверхности надо сложить площади треугольников АДС, АДВ, СДВ, найдем их. Площадь АДС = 1/2*20*21 = 210.

Площадь АДВ = 1/2*20*29=290. найдем сторону СВ по теореме пифагора = sqrt (29*29 - 21*21) = 20. Рассмотрев треугольник СДВ замечаем что все его стороны равны сторонам треугольника АДВ => и площади у них будут одинаковы. ответ S(бок поверхн) = 290*2+210 = 790

4,5(85 оценок)
Ответ:
nikitasonar
nikitasonar
09.10.2020
Любая вписанная трапеция равнобокая, так как углы, опирающиеся на одну дугу, должны быть равны. Обозначим основания трапеции за 2x и 2y. Тогда средняя линия равна (2x + 2y)/2 = (x + y),

Уравнения:
\begin{cases}
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
x+y=\sqrt{100-x^2}+\sqrt{100-y^2}
\end{cases}

Решаем первое уравнение.
\dfrac{\sqrt{100-x^2}}{\sqrt{100-y^2}}=\dfrac43\\
\dfrac{100-x^2}{100-y^2}=\dfrac{16}9\\
100-x^2=\dfrac{1600}9-\dfrac{16}9y^2\\
x^2=\dfrac{16}9y^2-\dfrac{700}9

Подставляя во второе уравнение и немного мучаясь, можно получить ответ x = 6, y = 8.

Уравнения будут выглядеть немного лучше, если обозначить куски высоты как 4x и 3x. Тогда уравнение будет выглядеть следующим образом:
2(\sqrt{100-16x^2}+\sqrt{100-9x^2})=7x\\
4(200-25x^2+2\sqrt{(100-16x^2)(100-9x^2)})=49x^2\\
x^2=t:\quad 149t-800=2\sqrt{100^2-25t+144t^2}\\
\dots
Получающееся квадратное уравнение радует количеством вычислений.

Наконец, можно обозначить неизвестными углы 
H1CO = x и H2DO = y
Тогда система получится простой:
\begin{cases}
4\sin x=3\sin y\\
\cos x+\cos y=\sin x+\sin y
\end{cases}
Но решать её всё равно неинтересно.

ответ. 12, 16.

Центр окружности, описанной около трапеции, делит ее высоту в отношении 3: 4. найти основания трапец
4,7(82 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ