АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Недочет в условии: середины двух ПАРАЛЛЕЛЬНЫХ хорд. перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
1,8x=180
x=180:1,8
x=100