Решим с уравнения допустим ВОС это х если АОВ в 3 на за больше ВОС, то АОВ=3х,а их сумма 108 градусов 1)х +3х=108 4х=108 х=108:4 х=27(ВОС) 2)27*3=81(АОВ) ответ:АОВ=81 см
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
допустим ВОС это х
если АОВ в 3 на за больше ВОС, то АОВ=3х,а их сумма 108 градусов
1)х +3х=108
4х=108
х=108:4
х=27(ВОС)
2)27*3=81(АОВ)
ответ:АОВ=81 см