Втреугольнике авс известно, что угол а равен 36 градусов, угол в 72 градуса. высоты ае и bf треугольника пересекаются в точке н. найдите углы четырехугольника асвн
1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2) итого
имеем для данного многоульника n(n-3)/2=35 n(n-3)=70 - не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон ответ: 10
Сумма углов треугольника равна 180°, следовательно,
∠С = 180° - 36° - 72° = 72°
Поскольку ∠В = ∠С то треугольник ABC - равнобедренный.
AE - высота, медиана и биссектриса, следовательно, ∠EAC = 36°/2 = 18°. Далее рассмотрим прямоугольный треугольник FBC
∠FBC = 90° - ∠FCB = 90° - 72° = 18°
Далее рассмотрим четырехугольник ACBH: сумма углов четырехугольника равна 360°, значит последний угол четырехугольника равен 360° - 72° - 18° - 18° = 252°
ответ: 18°; 18°; 72°; 252°.