Площадь прямоугольного треугольника равна половине произведения его катетов.
Пусть угол С=90°, угол А=30°.
Тогда ВС=12•sin30°=6 см
АС=12•cos30°=6√3 см
S(∆ABC)=AC•BC:2=36√3:2=18√3 см²
Равновеликие части означает равные по площади, т.е. каждая равна половине площади данного треугольника⇒
S/2=9√3 см² площадь кругового сектора окружности с центром в вершине А.
Одна из формул площади сектора круга:
S=πr*α/360°
отсюда находим радиус по известным площади и углу α=30°:
9√3=π•r²/12
r=√(108√3/π)=7,716 см
АВ{2-0;5-1} или АВ{2;4}. |AB|=√(4+16)=√20.
BC{4-2;1-5} или ВС{2;-4}. |BC|=√(4+16)=√20.
CD{2-4;-3-1} или CD{-2;-4}. |CD|=√(4+16)=√20.
AD{2-0;-3-1} или AD{2;-4}. |AD|=√(4+16)=√20.
Мы видим, что противоположные стороны четырехугольника попарно равны, а это признак параллелограмма.
Значит АВСD - параллелограмм, в котором ВСЕ стороны равны, а это признак ромба.
Итак, ABCD - параллелограмм и ромб, что и требовалось доказать.