Хорды АВ=СД=8, проводим радиусы АО=ВО=СО=ДО, треугольник АОВ=треугольник СОД по двум сторонам и углу между ними уголАОВ=уголСОД (уголАОВ и уголСОД-центральные углы, уголАОД=дуге АВ, уголСОД=дуге СД, равные хорды отсекают равные дуги, дуга СД=дуге АВ), проводим высоты ОН на АВ и ОК на СД, в равных треугольниках высоты проведенные на основание равны ОН=ОК, НК-расстояние=6, ОН=НК=1/2НК=6/2=3, ОН=ОК=медианам, биссектрисам, треугольники равнобедренные, АН=ВН=1/2АВ=8/2=4, треугольник АНО прямоугольный, АО=корень(АН в квадрате+ОН в квадрате)=корень(16+9)=5=радиус
Пусть исходная трапеция - АВСД, Высота трапеции Н=2h, где h - высота каждой меньшей трапеции. ВС=а, АД=b МК - средняя линия исходной трапеции и равна (а+b):2 МК - меньшее основание трапеции АМКД и большее основание трапеции МВСК S1- площадь трапеции МВСК и равна произведению её высоты h на полусумму её оснований: S1=h*(ВС+МК):2 S1=h*{а+(а+b):2}:2)=h*(3a+b):4 S2 - площадь трапеции АМКД и равна произведению её высоты h на полусумму её оснований: S2=h*(AD+МК):2 S2=h*{b+(b+a):2}:2=h*(a+3b):4 Разность между площадями этих трапеций S2-S1=h*(a+3b):4-h*(3a+b):4= =(ha+3hb-3ha-hb):4=2h(b-a):4 2h=H S2-S1=H(b-a):4
ВОК и СОК - смежные. их сумма 180.
ВОК=180-СОК=180-54=126
ВОК=126