Не то, что было бы трудно сосчитать, "как человек". Я в конце приложу "детский" расчет. А пока вот - что. Размещу-ка я КООРДИНАТНЫЕ ОСИ таким образом, чтобы центр координат был в центре октаэдра, а вершины его - в симметричных точках на осях. "Легче простого" убедиться в том, что координаты этого тетраэдра будут такие
(0,0,3) (0,0,-3) (0,3,0) (0,-3,0) (0,0,3) (0,0,-3).
Можете убедится, что любое ребро такого октаэдра равно √18 = 3*√2; (ну, соедините точку на оси X, x = 3, с точкой на оси Y, y = 3, получится равнобедренный прямоугольный тр-к с катетом 3, и гипотенузой 3*√2, и так - все ребра).
А теперь найдем координаты вершин куба. Рассмотрим "положительный" октант, то есть ту восьмую часть пространства, где x>0,y>0,z>0. Уравнение плоскости грани легко записать в виде x + y + z = 3, при этом центр этого треугольника имеет одинаковые координаты по всем осям, то есть лежит на прямой x = y = z;
Поэтому координаты вершины куба (1,1,1). Ну, и сразу ясно, какие будут координаты вершин куба в остальных октантах
(1,1,1) (-1,1,1) (1,-1,1)(-1,-1,1)(1,1,-1) (-1,1,-1) (1,-1,-1)(-1,-1,-1). Очевидно, что ребро куба равно 2, а объем равен 8. При этом объем октаэдра равен
8*(3/3)*(3*3)/2 = 36.
Теперь "детское" решение.
Сечение, перпендикулярное большой диагонали октаэдра, представляет собой квадрат со стороной 3*√2. Диагональ такого квадрата равна 6, а сторона квадрата, соединяющего середины сторон этого сечения, равна 3. Вершина куба лежит на апофеме, на расстоянии, на 1/3 апофемы ближе к вершине грани,чем середина основания, поэтому сторона куба равна 2/3 от стороны квадрата, соединяющего середины сторон построненного сечения. То есть равна 2, а объем 8.
Второй острый угол треугольника равен 180-90-60=30 градусов
Пусть катет b противолежит углу 30 градусов, такой катет равен половине гипотенузы. ⇒ b = c/2
По теореме Пифагора
a² + b² = c²
a² + (c/2)² = c²
a² + c²/4 = c²
a² = 4c²/4 - c²/4
a² = 3c²/4
a = √(3c²/4)
a = √3 *c/2
Площадь прямоугольного треугольника равняется половине произведения катетов ⇒ 1/2 * a * b = 220,5*√3
1/2 * √3 *c/2 * c/2 = 220,5√3
1 * √3 * c * c
= 220,5√3
2 * 2 * 2
√3 * c² = 8 * 220,5√3
c² = 220,5 * 8
c² = 1764
c = √1764
c = 42 (cм)
тогда b = 42/2 = 21
a = √3 * 21
Проверям по теореме Пифагора
(√3 *21)² + 21² = 42²
3*441 + 441 = 1764
1764 = 1764
Длина гипотенузы 42 (см)