Докажите, что если угол, биссектриса и высота, проведенные из из этого угла одного треугольника, соответственно равны углу, биссектрисе и высоте другого треугольника, то такие треугольники равны.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Медиана делит треугольник на два равновеликих треугольника. S(АВС)=2S(АМС).
Также, S(АМС)=(АМ·АС·sin∠МАС)/2 ⇒ sin∠МАС=2S(АМС)/(АМ·АС)=126/21√205=6/√205. cos²∠MAC=1-sin²∠MAC=1-36/205=169/205. cos∠МАС=13/√205.
В тр-ке АМС по теореме косинусов: МС²=АМ²+АС²-2АМ·АС·cos∠МАС=205+441-2√205·21·13/√205=100, МС=10. ВС=2МС=20. cos∠ACM=(АС²+МС²-АМ²)/(2АС·МС)=(441+100-205)/(2·21·10)=4/5.
В тр-ке АВС АВ²=АС²+ВС²-2АС·ВС·cos∠АСВ=441+400-2·21·20·4/5=169, АВ=13.
Итак, периметр ΔАВС: Р=АВ+ВС+АС=13+20+21=54 - это ответ.
гребанные ограничения посмотри вроде так должно быть