Окружность – замкнутая линия, все точки которой находятся на одинаковом расстоянии от данной точки. Эта точка называется центром окружности. Круг – это часть плоскости, которая лежит внутри окружности (вместе с самой окружностью) . Радиус – отрезок, соединяющий центр окружности с точкой на окружности.
Все радиусы окружности равны друг другу.
Диаметр – отрезок, соединяющий две точки окружности и проходящий через центр окружности.
Основания трапеции делятся точкой касания на два отрезка, один из которых равен радиусу, т.е. 3. Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8. По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9. Имеем систему уравнений. {a-b=8 a*b=9 Находим a и b. а=9, b=1. Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.