r=7.5 cm
Объяснение:
Пусть дан прямоугольный треугольник АВС, в котором угол В-прямой. Окружность с центром в точке О, которая лежит на гипотенузе касается катета ВС в точке Т и проходит через точку А. Гипотенуза АС пересекает окружность в точке К. К находится между О и А.
Известно, что катеты АВ=12 и ВС=16.
Проведем радиус ОТ. Так как Т точка касания , то треугольник ОТС-прямоугольный и угол Т -прямой.
Косинус угла С равен:
cosC=BC/AC
Найдем АС по т. Пифагора из треугольника АВС:
АС=sqr(AB^2+BC^2)=sqr(144+256)=sqr400=20
cosC=16/20=4/5
sinC =sqr(1-cosC^2)=sqr(1-16/25)=sqr(9/25)=3/5
ОС=ОТ/sinC=r*5/3=OK+KC
5/3*r=r+KC
KC=2/3*r
AC=20=2r+2/3*r
8*r/3=20
8r=60
r=60/8
r=7.5 cm
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.
8 см
Объяснение:
Диагональ АС делит угол А, равный 90°, в отношении 1 : 2.
Пусть ∠DAC = x, тогда ∠BAC = 2x.
x + 2x = 90°
3x = 90°
x = 30°
∠BCA = ∠DAC = 30° как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АС.
ΔАВС: ∠АВС = 90°, против угла в 30° лежит катет, равный половине гипотенузы, т.е. АС = 2АВ.
По условию АС + BD + AB + CD = 24,
диагонали прямоугольника равны, противоположные стороны равны, поэтому
2АС + 2АВ = 24
АС + АВ = 12
так как АС = 2АВ, получаем:
2АВ + АВ = 12
3АВ = 12
АВ = 4 см,
АС = 2АВ = 2 · 4 = 8 см