Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
1.Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки
2.Треугольник называется разносторонним, если любые две стороны его не равны друг другу
3.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине
4.Равносторонний треугольник - это треугольник у которого все стороны равны между собой, а все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.
5.Остроугольный-если все его три угла острые т.е. меньше 90 градусов
6.Прямоугольный-треугольник,у которого есть прямой угол, т.е. угол, равный 90 градусам
7.Если один из углов треугольника тупой, то треугольник называется тупоугольным
х - угол А
40+х - угол В
х+х+40=180
2х=180-40
2х=140
х=70
А=С=70 градусов
В=Д=110 градусов