2 см
Объяснение:
Дано:
треугольник АВС,
высота, проведенная к боковой стороне,
угол BA= 120 градусов,
основание = 4 см.
Найти длину высоты - ?
1) Рассмотрим треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов, а у на дан равнобедренный треугольник. У него два угла при основании равны.
Тогда:
угол А = углу В = (180 - угол А)/2;
угол А = углу В = (180 - 120)/2;
угол А = углу В = 60/2;
угол А = углу В = 30 градусов;
2) Рассмотрим прямоугольный треугольник
= 1/2 * АС (так как катет лежащий напротив угла в 30 градусов равен половине гипотенузы);
= 1/2 * 4;
= 2 сантиметра.
ответ: 2 сантиметра.
2 см
Объяснение:
Дано:
треугольник АВС,
высота, проведенная к боковой стороне,
угол BA= 120 градусов,
основание = 4 см.
Найти длину высоты - ?
1) Рассмотрим треугольник АВС. Сумма градусных мер углов треугольника равна 180 градусов, а у на дан равнобедренный треугольник. У него два угла при основании равны.
Тогда:
угол А = углу В = (180 - угол А)/2;
угол А = углу В = (180 - 120)/2;
угол А = углу В = 60/2;
угол А = углу В = 30 градусов;
2) Рассмотрим прямоугольный треугольник
= 1/2 * АС (так как катет лежащий напротив угла в 30 градусов равен половине гипотенузы);
= 1/2 * 4;
= 2 сантиметра.
ответ: 2 сантиметра.
1. Строим угол C, равный данному углу Е. Для этого
строим луч СН; проводим дуги с произвольным, но одинаковым радиусом с центрами в точках Е и С.; D и F - точки пересечения дуги со сторонами угла Е, К - точка пересечения дуги с лучом СН; проводим дугу с центром в точке F, радиусом FD, затем с тем же радиусом с центром в точке К. Точка пересечения дуг - L. Проводим луч CL. Угол LCK равен данному углу Е.2. На луче СН откладываем отрезок СА = b.
3. На луче CL откладываем отрезок СВ = а. Соединяем точки А и В.
Треугольник АВС - искомый.