М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DanochaDv
DanochaDv
05.01.2022 22:51 •  Геометрия

Периметр параллелограмма равен 126 см.найдите его стороны,если две из них относятся как 4: 5

👇
Ответ:
Perevezii
Perevezii
05.01.2022

28 см, 35 см, 28 см, 35 см.

Объяснение:

Полупериметр параллелограмма р=126:2=63 см.

Пусть соседние стороны составляют 4х см и 5х см, тогда

4х+5х=63

9х=63

х=7

Две стороны по 7*4=28 см, две другие стороны по  7*5=35 см.

4,8(23 оценок)
Открыть все ответы
Ответ:
mrrusarmz
mrrusarmz
05.01.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора:
AO^2 = OM^2 + 3^2
BO^2 = OM^2 + 12^2
Но при этом для большого прямоугольного треугольника ABO верно:
15^2 = AO^2 + BO^2
Сложим два первых выражения:
AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153
И приравняем со вторым:
225 = 2*OM^2 + 153
2*OM^2 = 225 - 153 = 72
OM^2 = 36
OM = 6
Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO:
AO^2 = 36 + 9 = 45
AO = \sqrt{45} = 3*\sqrt{5}
BO^2 = 36 + 144 = 180
BO = \sqrt{180} = 6*\sqrt{5}
Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.:
S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3*\sqrt{5} * 6*\sqrt{5} = 36 * 5 = 180 см^2
Перпендикуляр, опущенный из точки пересечения диагоналей ромба на его сторону, делит ее на отрезки 3
4,6(8 оценок)
Ответ:
DanilkaMare
DanilkaMare
05.01.2022
Перпендикуляр OM образовывает прямоугольные треугольники AMO и BMO. Для них верно, из теоремы Пифагора:
AO^2 = OM^2 + 3^2
BO^2 = OM^2 + 12^2
Но при этом для большого прямоугольного треугольника ABO верно:
15^2 = AO^2 + BO^2
Сложим два первых выражения:
AO^2 + BO^2 = 2*OM^2 + 9 + 144 = 2*OM^2 + 153
И приравняем со вторым:
225 = 2*OM^2 + 153
2*OM^2 = 225 - 153 = 72
OM^2 = 36
OM = 6
Теперь подставим в первое выражение и найдём половинки диагоналей, т.е. AO и BO:
AO^2 = 36 + 9 = 45
AO = \sqrt{45} = 3*\sqrt{5}
BO^2 = 36 + 144 = 180
BO = \sqrt{180} = 6*\sqrt{5}
Площадь ромба равна половине произведения диагоналей. Не забываем, что мы нашли половинки диагоналей, т.е.:
S = 1/2 * 2*AO * 2*BO = 2*AO*BO = 2 * 3*\sqrt{5} * 6*\sqrt{5} = 36 * 5 = 180 см^2
Перпендикуляр, опущенный из точки пересечения диагоналей ромба на его сторону, делит ее на отрезки 3
4,8(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ