Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
пусть диагонали d₁ и d₂
по условию
d₁-d₂=5
R-это высота в прямоугольном ΔABF
⇒
R=(d₁*d₂)/(2√(d₁²+d₂²))
L-длина окр
L=2πR=2π(d₁*d₂)/√(2(d₁²+d₂²))=12π
(d₁*d₂)/√(d₁²+d₂²)=12
d₁*d₂=12√(d₁²+d₂²)
возведем в квадрат
d₁² * d₂²=144(d₁²+d₂²)
d₁²+d₂²=d₁²*d₂²/144
d₁-d₂=5
d₁²+d₂²=25+2d₁d₂
d₁²*d₂²/144 = 25+2d₁d₂
пусть d₁d₂=t
t²/144=25+2t
t²-288t-3600=0
D₁=144²+3600=144²+60²=24336=156²
t=144±√24336
t=144±156
т.к. диагонали положительны то
t=300
S=t/2=150 ед²