1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
∠ABD = ∠CBD,
∠MDB = ∠NDB так как DB - биссектриса угла МDN,
BD - общая сторона для треугольников MDB и NDB, ⇒
ΔMDB = ΔNDB по стороне и двум прилежащим к ней углам.
Из равенства треугольников следует, что
BM = BN.
АМ = АВ - ВМ
CN = CB - BN
AB = CB как стороны равнобедренного треугольника АВС,
значит
AM = CN,