Объем прямой призмы равен произведению площади основания на высоту. Решение данной задачи сводится к нахождению площади трапеции (основания) если известны её основания и боковые стороны.
Найдем высоту трапеции:
проводим высоты из вершин меньшего основания и обозначим её - х, тогда один отрезок на большем основании - обозначим у, а второй отрезок равен (32-7-у)=(25-у);
треугольники, образованные боковыми сторонами, отрезками большего основания и высотами прямоугольные;
по т. Пифагора:
х²=20²-у²
х²=15²-(25-у)²;
решая данную систему находим у=16, тогда высота - х=12 см;
площадь основания - 12*(7+32)/2=294 см², объем - V=294*2=588 см³.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
Объяснение:
Объем прямой призмы равен произведению площади основания на высоту. Решение данной задачи сводится к нахождению площади трапеции (основания) если известны её основания и боковые стороны.
Найдем высоту трапеции:
проводим высоты из вершин меньшего основания и обозначим её - х, тогда один отрезок на большем основании - обозначим у, а второй отрезок равен (32-7-у)=(25-у);
треугольники, образованные боковыми сторонами, отрезками большего основания и высотами прямоугольные;
по т. Пифагора:
х²=20²-у²
х²=15²-(25-у)²;
решая данную систему находим у=16, тогда высота - х=12 см;
площадь основания - 12*(7+32)/2=294 см², объем - V=294*2=588 см³.