Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
Биссектрисы ВМ и СМ, пересекаясь с точкой М, принадлежащей стороне АD, образуют треугольники со стороной АD и боковыми сторонами. Образованные треугольники равнобедренные. Рассмотрим треугольник АВМ. Углы АВМ и АМВ равны, т.к. угол АМВ равен углу МВС как внутренний накрест лежащий, а углы АВМ и МВС равны по условию (ВМ - биссектриса). Следовательно треугольник АВМ равнобедренный, и АВ=АМ. Аналогично доказываем, что СD=MD. Коль скоро АВ=CD как стороны параллелограмма, то АМ=МD, т.е. точка М есть середина АD.
Угол РНМ=90
МН=МР
Значит треугольник равнобедренный.
Значит все углы треугольника МНР =180, углы НМР=МРН=(180-90)/2=45
Значит углы параллелограмма М=К=45 градусов
Сумма всех углов параллелограмма равна 360
Углы Р=С=(360-90)/2=135