1) ABCD - ромб , AB=BC=CD=AD=4 см , ВМ=2√3 см ,
∠АВС=150° ⇒ ∠BAD=180°-150°=30°
Проведём ВН⊥AD , ∠BHA=90° .
Из ΔАВН: ВН=АВ*sin30°=4*(1/2)=2 (см) .
МВ⊥ пл. АВСD ⇒ МВ⊥ любой прямой, лежащей в пл. ABCD ⇒
MB⊥BH ⇒ ΔАВН - прямоугольный , ∠МВН=90° ⇒ ΔМВН - прямоугольный.
Проведём отрезок МН, он будет наклонной, ВН - его проекция на плоскость АВСD , причём проекция ВН ⊥АD ⇒ по теореме о трёх перпендикулярах МН⊥AD , значит МН - расстояние от точки М до прямой AD.
МН найдём из прямоугольного ΔВНМ по теореме Пифагора:
МН=√(ВН²+ВМ²)=√(4+4*3)=√16=4 (см) .
Обозначим все углы выпуклого многоугольника как a1, a2, a3, a4 и т.д.
Сумма внешних углов выпуклого n-угольника равна
(180° - a1) + (180° - a2) + ... + (180° - an) = 180°n - (a1 + a2 + a3 + ... an) = 180°n - 180°(n-2) = 180°n - 180°n + 360° = 360°, ч.т.д.