Объяснение:
7)
<АВС=180°-<А*2=180°-30°=150°
Н=АВ/2=2/2=1 ед высота треугольника опущенная на ВС.
S=1/2*BC*H=1/2*2*1=1ед²
ответ: 1ед²
13)
S=MN²√3/4=4²√3/4=4√3 ед²
ответ: 4√3 ед².
14)
ВС=Р/3=6/3=2 ед сторона треугольника.
S=BC²√3/4=2²√3/4=√3 ед²
ответ: √3 ед²
15)
АВС- равносторонний треугольник.
S=AC²√3/4=8²√3/4=64√3/4=16√3 ед²
ответ: 16√3 ед²
19)
<В=180°-2*75°=30°
S=1/2*BC²*sin<B=1/2*2²*1/2=1ед²
ответ: 1ед²
20)
∆АВС- равносторонний.
S=a²√3/4 ед²
ответ: а²√3/4 ед²
21)
По формуле Герона.
р=(2*LM+KM)/2=50/2=25
S=√(25(25-13)(25-13)(25-24)=√(25*12*12*1)=
=5*12=60ед²
ответ: 60ед²
Т.к. треугольник ABC прямоугольный и равнобедренный то равны его катеты. A и С - острые углы треуг. ABC. острые углы, прилежащие к катетам, будут равны(по св-ву равнобедренного треугольника). Но т.к. сумма острых углов в прямоугольном треугольнике равна 90 градусов, то каждый острый угол треуг. ABC будет равен по 45 градусов.
Теперь рассмотрим треугольник ABH. он является прямоугольным т.к. угол H - прямой. один из острых углов треуг. ABH является острым углом треугольника ABC и равен 45 градусов. Следовательно второй острый угол треуг. ABH тоже равен 45 градусов.
ОТВет: 90, 45, 45
BAC=DAC
AC-общая сторона треугольников => ADC=ACB
По 2-му признаку подобия треугольников: если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны. => BC=DC