Условие задачи составлено не корректно:
Объяснение:
Решение 1) ( Не используем параметр <ВСD=60°)
∆АСD- прямоугольный треугольник
По теореме Пифагора
СD=√(AC²-AD²)=√(18²-13²)=√(324-169)=
=√155см
P(ABCD)=2(AD+CD)=2(13+√155)=
=26+2√155см
ответ: 26+2√155см
Решение 2) (Не используем теорему Пифагора)
∆АСD- прямоугольный треугольник
<СDA=90°; <ACD=60°; <CAD=30°
СD- катет против угла 30°
СD=AC/2=18/2=9см.
Р=2(АD+DC)=2(13+9)=2*22=44см
Решение 3)
(Не используем параметр диагональ АС)
<САD=30°
tg<CAD=CD/AD
tg30°=1/√3
1/√3=CD/13
CD=13/√3=13√3/3 см
Р=2(13+13√3/3)=2(39/3+13√3/3)=(2(39+13√3))/3=(78+26√3)/3 см.
Решение 4)
(Параметр АD≠13;)
СD=AC/2=9 см катет против угла 30°
cos<CAD=AD/AC
cos30°=√3/2
√3/2=AD/18
AD=18√3/2=9√3см
Р=2(АD+CD)=2(9+9√3)=18+18√3см
ответ: 18+18√3
Zmeura1204
1
с=72мм,
а=36мм
по теореме Пифагора
b =√(c^2 -a^2) =√(72^2 -36^2) =36√3
<C =90 - треугольник прямоугольный
sinA = a/c =36/72 =1/2 = sin30
<A=30
<B= 90 - <A =90-30 =60
ОТВЕТ
b =36√3 мм
<C =90
<A=30
<B=60
2
пусть боковая сторона -с
основание b =20 см
<A =<C =30 град
высота (h),опущенная на основание , боковая сторона -с и половина основания b/2
образуют прямоугольный треугольник
c =(b/2)/cos<A = (20/2)/cos30 = 10/√3/2 = 20√3/3 см
h =(b/2)*tg<A = (20/2)*tg30 = 10/√3 = 10√3/3см
ОТВЕТ
боковая сторона 20√3/3 см
высота 10√3/3см