М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Четерехуголник образованный отрезками , соединяющими середины сто н прямоугольника является?

👇
Ответ:
ArtemDenisiuk
ArtemDenisiuk
03.04.2021
По-моему это тоже прямоугольник
4,8(41 оценок)
Открыть все ответы
Ответ:
milenasargsyan0
milenasargsyan0
03.04.2021
Для нахождения площади параллелограмма можно применить разные формулы. 
1)
S=a•b•sin α, где a  и b -стороны, α - угол между ними. 
sin d150°=0,5
S=6•10•0,5=30 (ед. площади)
2)
В параллелограмме сумма углов, прилежащих к одной стороне, равна 180°. (свойство углов при параллельных прямых и секущей). 
Тогда острый угол параллелограмма равен 180°-150°=30°
Пусть дан параллелограмм АВСД.  АВ=СД=6, ВС=АД=10
Тогда высота ВН, проведенная к АД, как катет прямоугольного треугольника АВН противолежит углу 30° и по свойству такого катета равна половине длины гипотенузы АВ. 
ВН=6:2=3
S=a•h, где а - сторона, h- высота, проведенная к ней. 
S=10•3=30 (ед. площади).
4,6(29 оценок)
Ответ:
olga837
olga837
03.04.2021

В первой задаче высота равна 1.
Нужно рассмотреть прямоугольную трапецию, получаемую в сечении плоскостью, перпендикулярной обоим основаниям, проходящем через радиусы описанных вокруг оснований окружностей и боковое ребро пирамиды. Радиус окружности, описанной возле меньшего основания, равен 2/√3 (как радиус окружности, описанной возле равностороннего треугольника). Радиус окружности, описанной возле большего основания, равен 5/√3 (также равносторонний треугольник).
Итак, мы имеем дело с прямоугольной трапецией, меньшее основание равно 2/√3, большее основание 5/√3, боковая сторона, равная 2 (по условию - длина бокового ребра), является гипотенузой прямоугольного треугольника. Один катет равен 5/√3 - 2/√3 = 3/√3, тогда другой (равный искомой высоте) будет равен 4 - 3 = 1.

 

А во второй делаем следующее: проводим апофему и перпендикуляр к ней из центра основания - точки пересечения диагоналей квадрата, лежащего в основании. Будем иметь прямоугольный треугольник с катетом, равным 3 (по условию), и углом в 60 градусов, противолежащим этому катету. Гипотенуза, равная половине длины стороны квадрата, равна 3/sin60 = 2√3, значит, сторона квадрата, лежащего в основании, равна 2*2√3 = 4√3, а площадь основания (квадрата) равна 4√3*4√3 = 48.
Теперь найдем высоту этой пирамиды. Она есть катет прямоугольного треугольника, в котором апофема является гипотенузой, угол, противолежащий этому катету, равен 60 градусов, а второй катет мы нашли ранее - 2√3. Следовательно, второй катет - искомая высота - равен 2√3*tg60 = 6. Таким образом, нам стало известно, что площадь основания пирамиды равна 48, высота 6. Находим объем по формуле объема для правильной пирамиды:

Vпирамиды = 1/3*Н*Sоснования = 1/3*6*48 = 96 куб. ед.

 

 

4,4(65 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ