6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
с прямым углом
, EF — биссектриса
,
, FG — искомый отрезок.
.
— биссектриса, то
(биссектриса
делит
на два равные угла).
(это следует из условия: так как
прямоугольный, то и
; так как
— расстояние от
до
, то
).
и
, то и третий угол первого треугольника равен третьему углу второго треугольника:
. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:

.
является для обоих треугольников общей.
(второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (
— сторона, а
— два прилежащих угла)).
соответствует
, тогда:
. Смотрите второй рисунок.
17-7=10(гипотенуза)
7:2=3,5см(катеты)