Впрямоугольном треугольнике abc угол c равен 90, а угол cab равен 60. найдите катет bc, если высота cf треугольника равна 12. (если можете, то рисунок)
Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см; <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1. В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см ответ: 4,8 см
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Сумма углов треугольника = 180°, значит <СВА=180°-(60°+90°)=30°
Катет лежащий напротив угла = 30° равен половине гипотенузы. В прямоугольном треугольнике СFB катет = 12 => CB=24