Пусть ABCD - ромб, угол B=30 градусов, AH - высота, проведенная к стороне BC. Тогда в треугольнике ABH сторона AB равна 6 см (т. к. катет AH, лежащий против угла в 30 градусов, равен половине гипотенузы) . Площадь ромба находим по формуле: S=AH*AB (высота, умноженная на сторону ромба) . S=6*3=18 ответ: 18 сантиметров в квадрате
Т.к. треугольник АBC равнобедренный, то прямая MN отсекает от треугольника ABC равнобедренный треугольник поменьше - MCN. В равнобедренном треугольнике углы при основании равны, т.е. если угол MNC = 108 градусов, то углы NMC и NCM будут равны как углы при основании (180 - 108 = 72/2 = 36). т.к. угол NCA равен 36 градусов, то и угол BCA будет равен 36 градусов. угол BAC равен углу BCA как углы при основании равнобедренного треугольника и будет равен так же 36 градусов. угол ABC будет равен разности сумм углов BAC и BCA (угол ABC = 180 - угол BAC + угол BCA = 180 -(36+36) = 108)
Т.к. треугольник АBC равнобедренный, то прямая MN отсекает от треугольника ABC равнобедренный треугольник поменьше - MCN. В равнобедренном треугольнике углы при основании равны, т.е. если угол MNC = 108 градусов, то углы NMC и NCM будут равны как углы при основании (180 - 108 = 72/2 = 36). т.к. угол NCA равен 36 градусов, то и угол BCA будет равен 36 градусов. угол BAC равен углу BCA как углы при основании равнобедренного треугольника и будет равен так же 36 градусов. угол ABC будет равен разности сумм углов BAC и BCA (угол ABC = 180 - угол BAC + угол BCA = 180 -(36+36) = 108)
ответ: 18 сантиметров в квадрате