В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.
Обозначим точку пересечения диагоналей О.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒
в ∆ АВС ∠BСA=90°-75°=15°
∆ АВК - прямоугольный с острым углом ВАК=45°⇒
∠ВКА=45° ⇒ ∆ АВК равнобедренный.
АВ=АК*sin45°=(8*√2)/2=4√2 см
В ∆ АВС по т.синусов
АВ:sin15°=BC:sin75°
По таблице синусов
sin 15° =0,2588
sin75°=0,9659
4√2:0,2588=ВС:0,9659⇒
ВС=21,1127 см
S=AB•ВС=4√2•21,1127≈ 119,426 см²
------
Как вариант:
Найти из прямоугольного ∆ АВС диагональ АС:
АС=АВ:sin 15º=(4√2):0,2588
Площадь выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
S=0,5•d₁•d₂•sinφ , где
d₁ и d₂ – диагонали, φ – любой из четырёх углов между ними/
Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²
Пусть А - начало координат.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
K(0.5;0.5;0)
B1(1;0;1)
Вектора
ВС1(0;1;1) длина√2
DK(0.5;-0.5;0) длина √2/2
B1D(-1;1;-1) длина √3
С1К(-0.5;-0.5;-1) длина √6/2
Косинус угла между ВС1 и DK
(0.5)/√2//(√2/2)=1/2 угол 60 градусов
Косинус угла между В1D и С1К
(0.5-0.5+1)/√3/(√6/2)=√2/3
Угол arccos(√2/3)