М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
IvanRusYT
IvanRusYT
06.07.2020 00:17 •  Геометрия

Биссектриса угла прямоугольника делит его сторону на отрезки 21 см и 7 см, считая от ближайшей к данному углу вершины. найдите отрезки, на которые эта биссектриса делит диагональ прямоугольника.

👇
Ответ:
mmatomagomedova
mmatomagomedova
06.07.2020
∠ВАК = 90°/2 = 45°, значит ΔАВК прямоугольный равнобедренный,
АВ = ВК = 21 см

ВС = AD = 21 + 7 = 28 см

По теореме Пифагора из ΔABD:
BD = √(AB² + AD²) = √(441 + 784) = √1225 = 35 см

Биссектриса угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные прилежащим сторонам:
x : y = AB : AD
x : y = 21 : 28 = 3 : 4
4x = 3y

x + y = 35
y = 35 - x

4x = 3(35 - x)
4x = 105 - 3x
7x = 105
x = 15

BO = 15 см
OD = 35 - 15 = 20 см
4,5(68 оценок)
Открыть все ответы
Ответ:
DANILADEMON
DANILADEMON
06.07.2020
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
4,7(69 оценок)
Ответ:

Площа поверхні тіла обертання може бути знайдена за до формули:

S = 2π∫ab(x)dx,

де a - половина довжини основи рівнобедреного трикутника, яка дорівнює b/(2tan(β/2)).

Функція ab(x) описує довжину дуги, яку трикутник обертається, і може бути знайдена за до теореми Піфагора:

ab(x) = √(x^2 + b^2/4) + √(x^2 + b^2/4).

Тоді:

S = 2π∫ab(x)dx

= 2π∫0^a √(x^2 + b^2/4) + √(x^2 + b^2/4) dx

= 4π∫0^a √(x^2 + b^2/4) dx.

Здійснюємо підстановку x = (b/2)tan(t):

dx = (b/2)sec^2(t)dt,

x = 0 відповідає t = 0,

x = a відповідає t = atan(2a/b).

Тоді:

S = 4π∫0^atan(2a/b) √[b^2/4tan^2(t) + b^2/4] (b/2)sec^2(t) dt

= 2πb ∫0^atan(2a/b) [tan^2(t) + 1] sec(t) dt.

Зробимо ще одну підстановку: u = sec(t), du = sec(t)tan(t)dt.

Тоді:

S = 2πb ∫1^sec(atan(2a/b)) (u^2 - 1) du

= 2πb [u^3/3 - u]1^sec(atan(2a/b))

= 2πb [sec^3(atan(2a/b))/3 - sec(atan(2a/b))].

Враховуючи те, що sec(atan(x)) = √(x^2 + 1), отримуємо:

S = 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].

Отже, площа поверхні тіла обертання рівнобедреного трикутника дорівнює 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].

4,6(18 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ