Ну смотри: Т.к. трапеция у нас равнобедренная, мы опустим высоты от концов меньшего основания к большему, мы получим 2 равных треугольника и прямоугольник. т.к. у нас получится прямоугольник и 2 равных треугольника нижнее основание разделится на 10 и ещё 2 равных отрезка, т.к. у нас остаётся всего 8, значит 8/2=4, значит у нас получится прямоугольный треугольник со сторонами 5(гипотенуза) и 4(катет), т.к. это египетский треугольник третья сторона(она же высота) равна 3, площадь трапеции равна полусумме оснований на высоту, то есть: (10+18)/2*3=42. ответ:42
Пусть сторона квадрата до увеличения - х, тогда после увеличения на 20% - 1,2х. Пусть площадь квадрата до увеличения - S, тогда после увеличения - S+11. Можно составить систему уравнений: х²=S (1,2x)²=S+11
х²=S 1,44x²=S+11
Вычтем из второго уравнения первое: 1,44x²-х²=S+11-S 0,44x²=11 x²=11/0,44=25 x1=-5 - не подходит по условию задачи, так как сторона квадрата не может быть отрицательной величиной х2=5 (дм) Итак, сторона квадрата до увеличения равна 5 дм. Площадь квадрата до увеличения равна S=x²=5²=25 (дм²)
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
A1(0;0;1)
D1(0;1;1)
B1(1;0;1)
Вектора
АD1(0;1;1) длина √2
A1B(1:0;-1) длина √2
DD1(0;0;1)
Косинус Угла между AD1 и A1B
1/√2/√2=1/2 угол 60 градусов.
Уравнение плоскости А1ВС1
ах+by+cz+d=0
Подставляем координаты точек
c+d=0
a+d=0
a+b+c+d=0
Пусть d= -1 тогда с=1 а=1 b= -1
x-y+z-1=0
Синус угла между DD1 и А1ВС1
1/√3=√3/3 угол arcsin(√3/3)
Уравнение плоскости АВС
z=0
Плоскость АВ1D1
ax+by+cz=0
Подставляем координаты точек
а+с=0
b+c=0
Пусть с= -1 тогда а=1 b=1
x+y-z=0
Косинус угла между искомыми плоскостями
1/√3=√3/3 угол arccos(√3/3)