Дана равнобедренная трапеция АВСД. АВ и СД - боковые стороны. ВС - меньшее основание. По условию (и св-вам равнобедренной трапеции) АВ=СД=ВС
Проведем диагональ ВД. По условию угол АВД=120 градусов.
Проведем вторую диагоняль СА. (точка их пересечения О)Треугольник ВСО равнобедренный (по свойствам равн. трапеции), где ВО=ОС и угол ОВС=углу ВСО = х.
Треугольник АВС тоже равнобедренный. У него АВ=ВС (по условию) => Угол ВАС=углу ВСА(или ВСО) => угол АВС=углу ВСО=углу ОВС = х.
Найдем чему равен х:
120+х это угол АВС
120+х+х+х=180
3х=60
х=20 градусов.
Следовательн, углы при меньшем основании = 120+20=140 градусов (каждый по 140)
Углы при большем основании = (360-140-140):2=40 градусов (каждый по 40)
Примем меньшую сторону основания за х.
Меньшая сторона в данной задаче лежит против угла в 30 градусов.
Второй катет равен х√3, гипотенуза равна 2х.
Проекция бокового ребра на основание равна высоте пирамиды (это следует из условия задания - угол в 45 °).
Поэтому меньший катет равен 4 см, а больший - 4√3 см.
Тогда Sо = (1/2)*4*4√3 = 8√3 см².