Основание высоты,проведенной из вершины тупого угла равнобокой трапеции ,делит большее основание на два отрезка .найти отношение длин этих отрезков,если длины оснований равны 40 и 56 см.
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90 3x=90 x=30 один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a a+1\2a=42 3\2a=42 a=42×2;3=28 ответ 28 см
Условие Основание наклонной призмы – параллелограмм со сторонами 3 и 6 и острым углом 45o . Боковое ребро призмы равно 4 и наклонено к плоскости основания под углом 30o . Найдите объём призмы.
Решение Пусть K – ортогональная проекция вершины A наклонной призмы ABCDA1B1C1D1 на плоскость основания ABCD , AB = 3 , AD = 6 , BAD = 45o , AA1 = BB1 = CC1 = DD1 = 4 . По условию задачи AA1K = 30o Из прямоугольного треугольника AKA1 находим, что AK = AA1 = 2 , а т.к. AK – высота призмы ABCDA1B1C1D1 , то VABCDA1B1C1D1 = SABCD· AK = AB· AD sin 45o· AK =