М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ladykris111
ladykris111
11.05.2020 15:19 •  Геометрия

Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сечения, проходящая а) параллельно основания через середину высоты; б) через боковое ребро и высоты; в) через сторону основания перпендикулярно противоположному боковому ребру; г) через центр основания параллельно боковой грани; д) через середины четырех ребер?

👇
Ответ:
Islami1
Islami1
11.05.2020
Предварительные вычисления.
Радиус вписанной окружности основания 
r = √3/6·a
Радиус описанной окружности
R = √3/3·а
Площадь основания
S = √3/4·a²
а) Сечение параллельно основанию через середину высоты.
Треугольник этого сечения подобен треугольнику основания с коэффициентом подобия k = 0,5
Площадь сечения относится с площадью основания как k²
s₁ = S·k² = S/4 = √3/16·a²
б) Сечение проходит через боковое ребро и высоту
Основание треугольника сечения r+R, высота h
Площадь
s₂ = 1/2(r+R)h = 1/2(√3/6·a+√3/3·a)h = 1/2√3/2·ah = √3/4·ah
в) сечение через сторону основания перпендикулярно противоположному боковому ребру
В треугольнике из пункта и в текущем высота h₃ общая (на рисунке синяя). Найдём ей через площадь треугольника из пункта.
Нам нужна длина бокового ребра пирамиды
l² = h²+R² = h²+a²/3
l = √(h²+a²/3)
s₂ = 1/2 h₃l
√3/4·ah = 1/2 h₃√(h²+a²/3)
√3/2·ah = h₃√(h²+a²/3)
h₃ = √3·ah/(2√(h²+a²/3))
s₃ = 1/2·h₃a = √3·a²h/(4√(h²+a²/3)) = 3a²h/(4√(3h²+a²))
г) сечение через центр основания параллельно боковой грани
Треугольник этого сечения параллелен и подобен боковой грани пирамиды с коэффициентом подобия k = R/(R+r) = 2/3
Найдём плошадь боковой стороны
Её высота (синяя)
l² = h²+r² = h²+3/36·a² =  h²+a²/12
l = √(h²+a²/12)
площадь боковой стороны
s = 1/2·al = 1/2·a√(h²+a²/12)
площадь сечения
s₄ = k²s = 4/9·1/2·a√(h²+a²/12) = 2/9·a√(h²+a²/12) 
д) Сечение через середины четырех ребер
Такое сечение можно построить только проходящим через середины двух рёбер основания и двух боковых рёбер 
Сечение имеет форму четырёхугольника (или равносторонняя трапеция или прямоугольник)
Нижнее ребро b₁ - средняя линия основания, его длина
b₁ = a/2
Боковое
b₂ и b₄ - средняя линия боковой грани и в два раза короче бокового ребра, длину его вычисляли раньше √(h²+a²/3)
b₂ = b₄ = (√(h²+a²/3))/2
верхнее ребро b₃ - средняя линия боковой грани, проведённая параллельно основанию, его длина
b₃ = a/2
Итого - у нас прямоугольник с площадью
s₅ = a/2·(√(h²+a²/3))/2 = (a√(h²+a²/3))/4


Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сеч
Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сеч
Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сеч
Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сеч
Вправильной треугольной пирамиде известны сторону основания a и высокая h. как вычислить площадь сеч
4,5(82 оценок)
Открыть все ответы
Ответ:
nurbibisaidova3
nurbibisaidova3
11.05.2020
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1
4,6(39 оценок)
Ответ:
1)Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая)
2)Два смежных угла вместе составляют развернутый угол. Мера развернутого угла 180град. Значит сумма мер двух смежных углов равна 180 градусов
3)дано:

развернутые углы а и б

лучи с и д проходят между сторонами соответственных углов

углы 1и3 2и4 смежные

углы 1 и 2 равны

доказательство:

1. угол а: угол 3=180-угол1(по аксиоме измерение углов) | угол 3=180-угол1

уголб:угол 4=180-угол 2(по аксиоме измерение углов) |=> угол 4=180-угол1

угол1=углу2(по условию) |углы 3и4 равны

5)основа - развернутый угол. принятый за 180 градусов. А
половина развернутого называется ПРЯМЫМ
угол. меньше прямого острый
угол. больший прямого. но меньший развернутого тупой.
6)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого
7)Вертикальные углы равны!

Представь углы 1 , 3 и 2 , 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла , у которых одна сторона общая а две другие являются 
продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов

Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны.
Значит и сами углы равны. Теорема доказана
4,6(89 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ