Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Стороны параллелограмма: АВ = CD =1см; ВС = AD = 4см.
Объяснение:
В параллелограмме противоположные стороны равны.
Пусть параллелограмм разделен на два параллелограмма отрезком EF, параллельным сторонам АВ и CD параллелограмма ABCD - параллелограммы ABEF и FECD.
АВ=EF=CD и BC = AD = BE+EC. Тогда
Pabef = 2(AB+BE)=7 => AB+BE = 3,5 см. (1)
Pfecd = 2(EC+CD)=5 => EC+CD =2,5 см. (2)
Pabcd = 2(AB+ВС)=10 => AB+ВС = 5 см. (3)
Сложим (1) и (2): 2АВ+ВС = 6 см. И зная, что АВ+ВС=5см, имеем
АВ = 1 см. Тогда ВС = 4 см.