Все грани параллелепипеда abcda1b1c1d1 - прямоугольники. ad = 4, dc = 8 ,cc1 = 6. m - середина dс. постройте сечение параллелепипеда плоскостью, проходящей через м и параллельной (ab1c1). найти периметр сечения. с рисунком !
Т.к. трапеция равнобоковая, то две высоты, проведённые из меньшего основания к большему, будут равны, параллельны, будут отсекать на большем основании три отрезка, один из которых (центральный) равен меньшему основанию, а два других равны (исходя из равенства получившихся треугольников, которые равны по катета и гипотенузе). Находим далее эти равные отрезки. Вычитаем из длины большего основания меньшее и делим на два. Получаем 4 см. Т.к. диагонали перпендикулярны сторонам, то находим высоту треугольника как среднее геометрическое. Среднее геометрическое равно корню из произведения проекций катетов, т.е. высота равна √(4*(12+4)) = √(4*16) = √64 = 8 см. Значит, высота равна 8 см.
Да, делит. Для этого нужно рассмотреть два треугольника, образованных средней линией и высотой. Пусть x - катет одного треугольника (маленького, являющегося частью большого), средняя линия равна z. Тогда катет большого треугольника, параллельный катету маленького, равен 2x. Маленький треугольник и большой подобны по 1 признаку (т.к. прямая, перпендикулярная одной из параллельных прямых, параллельна и второй, прямые параллельны, т.к. средняя линия параллельна стороне треугольника). Из подобия следует, что коэффициент подобия равен 1:2 => средняя линия делит высоту на две равные части.
ответ: 18
Объяснение:
Параллельные плоскости пересекаются третьей плоскостью по параллельным прямым.
1. Плоскости граней AA₁D₁D и ВВ₁С₁С параллельны. Они пересечены плоскостью (АВ₁С₁), значит линии пересечения параллельны.
(АВ₁С₁) ∩ (ВВ₁С₁) = В₁С₁,
В₁С₁ ║ВС и ВС║AD как противолежащие стороны прямоугольников, ⇒ В₁С₁ ║ AD. Тогда
(АВ₁С₁) ∩ (АА₁D₁) = AD.
AB₁C₁D - сечение параллелепипеда плоскостью (АВ₁С₁).
2. Секущая плоскость и плоскость (АВ₁С₁) параллельны, значит они пересекаются плоскостями граней параллелепипеда по параллельным прямым.
Проведем МТ║AD, MK║DC₁, TP║AB₁ и PK║B₁C₁.
MKPT - искомое сечение.
3. ТМ║ВС, ВТ║СМ, ∠ТВС = 90°, значит ТВСМ прямоугольник,
ТМ = ВС = 4.
Аналогично, РК = ВС = 4.
МКРТ - параллелограмм, так как МТ║РК и МТ = РК.
М - середина CD, МК║DC₁, значит МК - средняя линия ΔDCC₁, тогда К - середина СС₁.
ΔМКС: ∠МСК = 90°, МС = CD/2 = 4, СК = СС₁/2 = 3, значит МК = 5 (египетский треугольник).
Pmkpt = 2(TM + MK) = 2 · (4 + 5) = 2 · 9 = 18