1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне.
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Объяснение:
Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)