Пусть угол b =x ,тогда угол a =x+51. сумма этих углов равна 180,так как они смежные. Составим и решим уравнение. x+x+51=180 2x=180-51 2x=129 x=129:2 x=64,5 Угол b равен 64,5 Угол a равен 64,5+51 =115,5
Для краткости и ясности записи пусть OA = a; OB = b; OC = c; OD = d; Площадь AOB Saob = a*b*sin(Ф)/2; где Ф = ∠AOB; аналогично Sboc = b*c*sin(Ф)/2; Scod = c*d*sin(Ф)/2; Saod = a*d*sin(Ф)/2; Отсюда легко видеть, что если c*d = x; то a*b = 2*x; и если a*d = y; то c*b = 18*y; где x и y - неизвестные пока величины. Отсюда 9*y/x = c/a; и x/y = c/a; то есть (x/y)^2 = 9; x = 3*y; (или можно перемножить :) abcd = 2x^2 = 18y^2; x = 3y;) Получилось, что Scod = 3*Saod; 28 = Saod + 3*Saod + 18*Saod + 6*Saod = 28*Saod; Saod = 1; Saob = 6; Sboc = 18; Scod = 3;
Рисунок самостоятельно начертишь. 1) Рассм треуг АВД, в нем уг В =90*, уг Д=30*, след уг А=60* ( по теореме о сумме углов в треугольнике) 2) В трап АВСД уг Д=60* ( по условию ВД - биссектриса) 3) трап АВСД - р/б так как в ней углы при основании АД равны по 60* 4) Уг СВД=уг ВДА=30* (как накрестлеж при BC||АД и сек ВД), след треуг ВСД - р/б (по признаку) с осн ВД. 5) из 3,4 следует, что АВ=ВС=СД 6) Р(АВСД)= 3*АВ+АД=60 (см) 7) Рассм треуг АВД ( уг В=90* по усл, уг Д=30* по усл). АД=2*АВ (по свойству катета, леж против угла в 30*) 8) на основании пп 6,7) получаем: 3*АВ + 2*АВ = 60 ; 5*АВ=60 ; АВ=12 (см)
x+x+51=180
2x=180-51
2x=129
x=129:2
x=64,5
Угол b равен 64,5
Угол a равен 64,5+51 =115,5