Площадь круга находят по формуле S =πr² Радиус вписанного в треугольник круга можно найти по формуле r=S:p, где S- площадь треугольника, р- его полупериметр. р=(10+24+26):2=30Площадь треугольника найдем по формуле Герона:S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны. S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120r=120:30=4 см S =16π см²Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника. Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2, где а, b - катеты, с - гипотенуза:r=(10+24-26):2=4 cм. Площадь круга, естественно. будет та же - 16π см²
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
все стороны основания = 4
раз уж боковые грани квадраты, то высота тоже = 4
2) V = S(основа) * h
4^2 (корень 3) * 4 = 16 (корень 3)П