
С линейки проводим прямую и на ней с циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.
Далее строим угол ВАF равный углу 1. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 1 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.
С циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.
Далее, проводим луч АF с линейки.
Далее, строим угол АВD равный углу 2. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 2 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.
С циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.
Далее, проводим луч ВD с линейки.
Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС - искомый.
Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 1800. Значит, сумма двух данных углов должна быть меньше 1800. Если же сумма двух данных углов будет больше 1800, то нельзя построить треугольник, углы которого равнялись бы данным углам.
Объяснение:
v В прямоугольном треугольнике больший угол равен 90°. Гипотенуза лежит против угла 90°. Против большего угла лежит большая сторона,
• Гипотенуза прямоугольного треугольника больше каждого из катетов. a < c > b
• Сумма острых углов прямоугольного треугольника 180°-90°=90°
• Две высоты прямоугольного треугольника совпадают с его катетами.
• Высота прямоугольного треугольника, проведенная к гипотенузе, делит его на подобные треугольники.
• Если катет, лежит против угла 30°, он равен половине гипотенузы.
• Медиана прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, равна половине гипотенузы и является радиусом описанной около этого треугольника окружности.
• Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
• В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (теорема Пифагора):
c²=a²+b²
• Высота, проведенная к гипотенузе, - есть среднее пропорциональное между отрезками, на которые она делит гипотенузу ( т.е. между проекциями катетов на гипотенузу)
• Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.