объем = V=a⋅b⋅h=10⋅24⋅10=2400см3
Объяснение:
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Длина и ширина нам известны, необходимо вычислить высоту.
Площадь диагонального сечения равна произведению диагонали основания и высоты прямоугольного параллелепипеда.
S(диаг. сеч.)=c⋅h=a2+b2−−−−−−√⋅h=102+242−−−−−−−−√⋅h=676−−−√⋅h=26⋅h.
По условию задачи площадь диагонального сечения прямоугольного параллелепипеда равна 260см2.
26⋅h=260
h=26026=10см
Вычислим объем
V=a⋅b⋅h=10⋅24⋅10=2400см3
1) Удалите номера неверных утверждений:
1. Если один из острых углов прямоугольного треугольника равен 73о, то второй острый угол равен 27о. - неверно, 17°
2. Если углы при основании равнобедренного треугольника равны по 60о, то такой треугольник – правильный. - верно, третий угол тоже 60°
3. Существует треугольник со сторонами 3,4,5. - существует, это прямоугольный треугольник, "египетский"
2) Удалите номер верных утверждений:
1. Если два катета одного треугольника соответственно равны двум катетам другого треугольника, то такие треугольники равны. - верно
2. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180о. - верно
3. Если в треугольнике два угла равны, то он равнобедренный. - верно
3) Сформулируйте теорему о катете прямоугольного треугольника, лежащего против угла в 30 градусов. - Катет, лежащий против угла 30 градусов, равен половине гипотенузы.
4) Острые углы прямоугольного треугольника относятся как 12:18. Найдите эти углы.
Сумма острых углов прямоугольного треугольника составляет 90 градусов. Пусть ∠1=12х°, ∠2=18х°, тогда 12х+18х=90; 30х=90; х=3.
∠1=12*3=36°; ∠2=18*3=54°
ответ: 36°, 54°
2ab*cosα = a²+b²-d²
2*13*14*cosα = 13²+14²-15²
cosα = (169+196-225)/364 = 140/364 = 5/13
sinα = √1-cos²α = √(13²-5²)/13² = 12/13
Высота h = a*sinα = 13*12/13 = 12 cм
ответ: наименьшая высота параллелограмма 12 см
PS В предыдущем решении S - площадь тр-ка, а не параллелограмма