ответ: 40cm
Объяснение:
Пусть трапеция ABCD . Большее основание это AD=45 см.
боковые стороны АВ =20см, CD=15cm.
Пусть точка пересечения биссетрисс Т , и по условию задачи Т принадлежит основанию ВС.
Заметим что ∡TAD=∡ATB (накрест лежащие). Но ∡BAT=∡TAD, так как АТ - биссетриса.
Отсюда следует, что ∡BAT=∡BTA => ΔABT - равнобедренный.
То есть АВ=ВТ=20см.
По той же причине и треугольник СТD тоже равнобедренный,
ТС=CD=15 cm
Тогда ВС=ВТ+СТ=20+15=35 см
Тогда средняя линия трапеции MN=(AD+BC)/2=(45+35)/2= 40 cm
где AA и BB – некоторые числа. При этом коэффециенты AA и BB одновременно не равны нулю, так как тогда уравнение теряет смысл.
Если C=0C=0, а AA и BB отличны от нуля, то прямая проходит через через начало координат.
Если A=0A=0, а BB и CC отличны от нуля, то прямая параллельна оси OxOx.
Если B=0B=0, а AA и CC отличны от нуля, то прямая параллельна оси OyOy.
Если B=C=0B=C=0, а AA отличен от нуля, то прямая совпадает с осью OyOy.
Если A=C=0A=C=0, а BB отличен от нуля, то прямая совпадает с осью OxOx.
cos B=14\20=0,7.
ответ: 0,7.