Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
Здесь А и Д лежат в одной плоскости, поэтому через них можно провести прямую. Соединим их.
А и М тоже лежат в одной плоскости, соединим их.
Плоскость (BCC₁) параллельна плоскости (ADD₁),поэтому через М проводим прямую параллельно DD1.
Она пересеклась с СС1. Обозначим точку их пересечения К.
Точки К и D₁ лежат в одной плоскости, ⇒ через них можно провести прямую, лежащую в этой плоскости.
Получено нужное сечение АМКD₁.
Для того, чтобы вычислить периметр сечения, нужно найти длину всех стороны четырехугольника АМКD₁
АD₁ - диагональ квадрата со стороной 4
АD₁=4√2
МК параллельна ВС₁=AD₁ и является средней линией треугольника ВСС₁.
Она равна половине ВС₁
МК=2√2
⊿АВМ=⊿КС₁D₁ по двум сторонам и углу между ними.
АМ=КD₁
Из треугольника АВМ, где АВ=4, ВА=2
АМ=√(АВ²+ВМ²)=√(16+4)=2√5
Периметр АМКD₁
Р=2*2√5+4√2+2√2Р=6√2+4√5 (единиц длины)